
Teaching Compilers with Python →

Teaching Compilers with Python

Matthieu Amiguet

PyCon 2010 Atlanta

Teaching Compilers with Python →

Teaching Compilers With Python?

Not a very common choice. . .

WHY?
HOW?

RESULTS?

Teaching Compilers with Python →

Teaching Compilers. . .

IT students, last year of BSc
Relatively short period of time (8 weeks)
However, students are expected to realize a complete,
working project using compiler techniques

Teaching Compilers with Python

General Architecture of a Compiler

flow of characters
flow of tokens
Abstract Syntax Tree (AST)
Decorated AST

Teaching Compilers with Python

General Architecture of a Compiler

flow of characters

flow of tokens
Abstract Syntax Tree (AST)
Decorated AST

Teaching Compilers with Python

General Architecture of a Compiler

flow of characters
flow of tokens

Abstract Syntax Tree (AST)
Decorated AST

Teaching Compilers with Python

General Architecture of a Compiler

flow of characters
flow of tokens
Abstract Syntax Tree (AST)

Decorated AST

Teaching Compilers with Python →

General Architecture of a Compiler

flow of characters
flow of tokens
Abstract Syntax Tree (AST)
Decorated AST

Teaching Compilers with Python →

Choices for the course

Focus on practice
Focus on front-end techniques
Use code generators

Teaching Compilers with Python →

Previous experience

C/Lex/Yacc

The real thing, but. . .
Too difficult

Java/Jaccie

Many interesting ideas, but. . .
Clumsy, buggy, unmaintained

Teaching Compilers with Python →

Requirements For a Better Solution

High-level programming language
Good code separation between scanner, parser, . . .
Possibility to generate text and/or graphical
representations of AST’s
Mature, maintained, cross-platform

Teaching Compilers with Python →
Python/PLY (+customization)

Teaching Compilers with Python

1 Python/PLY (+customization)

2 Results

3 Conclusion

Teaching Compilers with Python →
Python/PLY (+customization)

PLY 101 by Example

Teaching Compilers with Python

1 Python/PLY (+customization)
PLY 101 by Example
Adding Graphical AST Representations
Getting good code separation

2 Results

3 Conclusion

Teaching Compilers with Python →
Python/PLY (+customization)

PLY 101 by Example

What is PLY?

PLY is a python re-implementation of Lex and Yacc
Written by David Beazley
Based on introspection very “economic”

Let’s try to evaluate arithmetic expressions like

(1+2)∗3−4

Teaching Compilers with Python

Python/PLY (+customization)

PLY 101 by Example

Using ply.lex

t_ADD_OP = r ’ [+−] ’
t_MUL_OP = r ’ [∗ /] ’

def t_NUMBER (t) :
r ’ \ d + (\ . \ d+)? ’
t .value = float (t .value)
return t

Teaching Compilers with Python →
Python/PLY (+customization)

PLY 101 by Example

Using ply.lex

t_ADD_OP = r ’ [+−] ’
t_MUL_OP = r ’ [∗ /] ’

def t_NUMBER (t) :
r ’ \ d + (\ . \ d+)? ’
t .value = float (t .value)
return t

Teaching Compilers with Python →
Python/PLY (+customization)

PLY 101 by Example

Grammar for the parser

expression → NUMBER
| expression ADD_OP expression
| expression MUL_OP expression
| ’(’ expression ’)’
| ADD_OP expression

Teaching Compilers with Python

Python/PLY (+customization)

PLY 101 by Example

Using ply.yacc

def p_expression_num (p) :
’ expression : NUMBER ’
p [0] = p [1]

def p_expression_op (p) :
’ ’ ’ expression : expression ADD_OP expression

| expression MUL_OP expression ’ ’ ’
i f p [2] == ’+ ’ : p [0] = p [1] + p [3]
e l i f p [2] == ’− ’ : p [0] = p [1] − p [3]
e l i f p [2] == ’ ∗ ’ : p [0] = p [1] ∗ p [3]
e l i f p [2] == ’ / ’ : p [0] = p [1] / p [3]

Teaching Compilers with Python →
Python/PLY (+customization)

PLY 101 by Example

Using ply.yacc

def p_expression_num (p) :
’ expression : NUMBER ’
p [0] = p [1]

def p_expression_op (p) :
’ ’ ’ expression : expression ADD_OP expression

| expression MUL_OP expression ’ ’ ’
i f p [2] == ’+ ’ : p [0] = p [1] + p [3]
e l i f p [2] == ’− ’ : p [0] = p [1] − p [3]
e l i f p [2] == ’ ∗ ’ : p [0] = p [1] ∗ p [3]
e l i f p [2] == ’ / ’ : p [0] = p [1] / p [3]

Teaching Compilers with Python →
Python/PLY (+customization)

Adding Graphical AST Representations

Teaching Compilers with Python

1 Python/PLY (+customization)
PLY 101 by Example
Adding Graphical AST Representations
Getting good code separation

2 Results

3 Conclusion

Teaching Compilers with Python →
Python/PLY (+customization)

Adding Graphical AST Representations

Graphical Representations

PLY provides almost everything we need. . .
. . . except AST representation

PLY is agnostic about what to do when parsing

We provide our students with a set of classes allowing to

build an AST
generate ASCII or graphical representations of it

Graphics generated by Graphviz via pydot

Teaching Compilers with Python →
Python/PLY (+customization)

Adding Graphical AST Representations

Using Pydot

class Node :
[. . .]
def makegraphicaltree (self , dot=None , edgeLabels=True) :

i f not dot : dot = pydot .Dot ()
dot .add_node (pydot .Node (self .ID ,label=repr (self) , shape=self .shape))
label = edgeLabels and len (self .children)−1
for i , c in enumerate (self .children) :

c .makegraphicaltree (dot , edgeLabels)
edge = pydot .Edge (self .ID ,c .ID)
i f label :

edge .set_label (str (i))
dot .add_edge (edge)

return dot

Teaching Compilers with Python →
Python/PLY (+customization)

Adding Graphical AST Representations

Using the Node Class Hierarchy

def p_expression_op (p) :
’ ’ ’ expression : expression ADD_OP expression

| expression MUL_OP expression ’ ’ ’
p [0] = AST .OpNode (p [2] , [p [1] , p [3]])

Teaching Compilers with Python →
Python/PLY (+customization)

Adding Graphical AST Representations

toto = 12∗−3+4;
a = toto+1; a∗2

Program

=

0

=

1

* (2)

2

’toto’

0

+ (2)

1

* (2)

0

4.0

1

12.0

0

- (1)

1

3.0

’a’

0

+ (2)

1

’toto’

0

1.0

1

’a’

0

2.0

1

Program
| =
| | ’toto’
| | + (2)
| | | * (2)
| | | | 12.0
| | | | - (1)
| | | | | 3.0
| | | 4.0
| =
| | ’a’
| | + (2)
| | | ’toto’
| | | 1.0
| * (2)
| | ’a’
| | 2.0

Teaching Compilers with Python →
Python/PLY (+customization)

Adding Graphical AST Representations

Representing threaded ASTs

a=0;
while (a−10) {

pr in t a ;
a = a+1

}

Program

=

0

while

1

’a’

0

0.0

1

’a’

1

- (2)

0

Program

1

’a’

0

0

10.0

1

print

0

=

1

’a’

0

+ (2)

1

’a’

0

1.0

1

ENTRY

Teaching Compilers with Python →
Python/PLY (+customization)

Getting good code separation

Teaching Compilers with Python

1 Python/PLY (+customization)
PLY 101 by Example
Adding Graphical AST Representations
Getting good code separation

2 Results

3 Conclusion

Teaching Compilers with Python →
Python/PLY (+customization)

Getting good code separation

The Problem

The approach based on the Node class hierarchy above
works well for graphics. . .
. . . but it breaks the code separation we were looking for.

Class AST Semantic analyzer Interpreter Compiler

BlockNode __init__(), __draw__(), . . . thread() execute() compile()

StatementNode __init__(), __draw__(), . . . thread() execute() compile()

.

Problem: we would like lines as classes and rows as
modules. . .

Teaching Compilers with Python →
Python/PLY (+customization)

Getting good code separation

The Answer: a (Very) Simple Decorator

def addToClass (cls) :
def decorator (func) :

setattr (cls ,func .__name__ ,func)
return func

return decorator

Teaching Compilers with Python →
Python/PLY (+customization)

Getting good code separation

Using @addToClass

@addToClass (AST .ProgramNode)
def execute (self) :

for c in self .children :
c .execute ()

@addToClass (AST .OpNode)
def execute (self) :

args = [c .execute () for c in self .children]
[. . .]

@addToClass (AST .WhileNode)
def execute (self) :

while self .children [0] . execute () :
self .children [1] . execute ()

Teaching Compilers with Python →
Python/PLY (+customization)

Getting good code separation

Namespace Pollution

class Foo :
pass

help (sys)

@addToClass (Foo)
def help (self) :

pr in t " I ’m Foo ’ s help "

help (sys)

Teaching Compilers with Python →
Results

Teaching Compilers with Python

1 Python/PLY (+customization)

2 Results

3 Conclusion

Teaching Compilers with Python →
Results

Comparison

Teaching Compilers with Python

1 Python/PLY (+customization)

2 Results
Comparison
Examples

3 Conclusion

Teaching Compilers with Python →
Results

Comparison

Comparison

The PLY-based solution is

Easier than C/Lex/Yacc
More stable and mature than Java/Jaccie

Students get more time to

understand the concepts
develop interesting projects

Graphical representations help to understand AST’s and
threading
Unexpected side effect: Python’s many libraries and high
productivity allow for very interesting projects!

Teaching Compilers with Python →
Results

Examples

Teaching Compilers with Python

1 Python/PLY (+customization)

2 Results
Comparison
Examples

3 Conclusion

Teaching Compilers with Python →
Results

Examples

Mougin & Jacot, 2009

Compiler
Rather complex source language

Built-in types: int, float, string, array
Conditional, loops
Console & file input/output
Functions, recursion, imports, . . .

The target is a kind of assembler language for a custom
virtual machine (also written in Python)
The compiler implements

Some error checking
Some AST and bytecode optimization
. . .

Teaching Compilers with Python →
Results

Examples

Example

function main (args) {
pr in t (fact (500)) ;

}

function fact (n) {
i f (n==1) ret = n ;
else ret = n∗fact (n−1) ;
return ret ;

}

GETPROGARGS
CALL main 1
main : PUSHI 500
CALL fact 1
WRITE
PUSHI 0
EXIT
fact : ALLOC 1
GETP 0
PUSHI 1
EQ
JZ ifsep0_0
GETP 0
SETL 0
JMP endif0
ifsep0_0 : GETP 0
GETP 0
PUSHI 1
SUB
CALL fact 1
MUL
SETL 0
endif0 : GETL 0
RETURN 1

Teaching Compilers with Python →
Results

Examples

Roth & Voumard, 2008

Interpreter for a simple multi-agent programming language

In the spirit of NetLogo

With PyGame back-end
Two types of objects (cars and trucks) move and interact in
an environment
Many built-ins functions to manipulate the objects
Conditionals, loops, . . .

Teaching Compilers with Python →
Results

Examples

Example

while running {
all [

nb = current .pickNeighbours ()
nb = nb .count ()
i f current .isCar () {

min = 2
max = 5

} else {
min = 0
max = 0

}
i f (nb < min | | nb > max) {

current .turn (rand(−1 ,1))
fw = current .pickBackward ()
. . .

Teaching Compilers with Python →
Results

Examples

Running. . .

Teaching Compilers with Python →
Conclusion

Teaching Compilers with Python

1 Python/PLY (+customization)

2 Results

3 Conclusion

Teaching Compilers with Python →
Conclusion

Conclusion

Three years after introducing the Python/PLY approach,
we’re still very pleased with the results
Students spend less time learning to use the tools. . .
. . . and more time understanding what they are doing!
Also a great opportunity to introduce Python in the
curriculum

Alternative to other major OO high-level languages

Teaching Compilers with Python →
Conclusion

Perspectives

Migrate to Python 3
Find a solution to the namespace pollution problem of
@addToClass

Develop tools to visualize the process of parsing and not
only the result

First prototype by David Jacot, 2010

Teaching Compilers with Python →
Conclusion

Visualizing the Parsing Process

Teaching Compilers with Python →
Conclusion

Further information

More details in the companion paper
Code, student’s examples & tutorials (in french) on

http://www.matthieuamiguet.ch/

http://www.matthieuamiguet.ch/

Teaching Compilers with Python →
Conclusion

Questions?

	Python/PLY (+customization)
	PLY 101 by Example
	Adding Graphical AST Representations
	Getting good code separation

	Results
	Comparison
	Examples

	Conclusion

